Signal propagation techniques for wireless underground communication networks
نویسندگان
چکیده
Wireless Underground Communication Networks (WUCNs) consist of wireless devices that operate below the ground surface. These devices are either (i) buried completely under dense soil, or (ii) placed within a bounded open underground space, such as underground mines and road/subway tunnels. The main difference between WUCNs and the terrestrial wireless communication networks is the communication medium. In this paper, signal propagation characteristics are described in these constrained areas. First, a channel model is described for electromagnetic (EM) waves in soil medium. This model characterizes not only the propagation of EM waves, but also other effects such as multipath, soil composition, water content, and burial depth. Second, the magnetic induction (MI) techniques are analyzed for communication through soil. Based on the channel model, the MI waveguide technique for communication is developed to address the high attenuation challenges of MI waves through soil. Furthermore, a channel model, i.e., the multimode model, is provided to characterize the wireless channel for WUCNs in underground mines and road/subway tunnels. The multimode model can characterize two cases for underground communication, i.e., the tunnel channel and the room-andpillar channel. Finally, research challenges for the design communication protocols for WUCNs in both underground environments are discussed based on the analysis of the signal propagation. © 2009 Elsevier B.V. All rights reserved.
منابع مشابه
Characteristics of Underground Channel for Wireless Underground Sensor Networks
Wireless Underground Sensor Networks (WUSN) constitute one of the promising application areas of the recently developed wireless sensor networking techniques. The main difference between WUSN and the terrestrial wireless sensor networks is the communication medium. The propagation characteristics of electromagnetic (EM) waves in soil and the significant differences between propagation in air pr...
متن کاملChannel model and analysis for wireless underground sensor networks in soil medium
Wireless underground sensor networks (WUSNs) constitute one of the promising application areas of the recently developed wireless sensor networking techniques. The main difference between WUSNs and the terrestrial wireless sensor networks is the communication medium. The propagation characteristics of electromagnetic (EM) waves in soil and the significant differences between propagation in air ...
متن کاملElectromagnetic Wave Propagation in Soil for Wireless Underground Sensor Networks
Wireless underground sensor networks (WUSN) consist of wireless devices that operate below the ground surface. These devices are buried completely under dense soil, thus electromagnetic wave transmits only through soil medium. However, the high attenuation that caused by soil is the main challenge for the electromagnetic wave transmission for WUSN. In this study, architecture of wireless underg...
متن کاملRadio Frequency Propagation Model and Fading of Wireless Signal at 2.4 GHz in Underground Coal Mine
Deployment of wireless sensor networks and wireless communication systems have become indispensable for better real-time data acquisition from ground monitoring devices, gas sensors, and equipment used in underground mines as well as in locating the miners, since conventional methods like use of wireline communication are rendered ineffective in the event of mine hazards such as roof-falls, fir...
متن کاملProbabilistic routing protocol for a hybrid wireless underground sensor networks
A wireless underground sensor network (WUSN) is defined as a network of wireless sensor devices in which all sensor devices are deployed completely underground (network sinks or any devices specifically for relay between sensors and a sink may be aboveground). In hybrid wireless underground sensor network (HWUSN), communication between nodes is implemented from underground-to-air or air-to-unde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical Communication
دوره 2 شماره
صفحات -
تاریخ انتشار 2009